Nanonis BP4

SPM Control System Base Package

The Expandable Engine for Your SPM Project

Features
- Absolute Stability
- 24 Signal Channels Simultaneously
- Lowest Noise and Highest Resolution
- Fully Multi Threaded
- Advanced 2D- and 3D-spectroscopy
- Nanomanipulation and Lithography
- Powerful and Clean User Interface
- Spectrum Analyzer and Oscilloscope
- All Data in True Physical Units
- Compatible with any SPM
- Fully Future Proof

Outstanding
- Flexibility
- Performance
- Reliability
- Ease of Use
The Base Package of the Nanonis Control System provides the fundamental framework for every SPM application. From signal conditioning and AD/DA conversion to real-time processing and the graphical user interface, the Base Package is a framework that can be adapted to everybody’s needs and extended with a range of add-on modules. All basic processes such as z-control, scan-control, data acquisition, atomic manipulation, lithography and spectroscopy are included, allowing for easy control of elementary STM and AFM operations.

Fully Digital System
All analog signals are converted immediately and internal processing is fully digital. This has become possible only recently with the latest advances in the performance of processors and AD/DA converters.

The advantages are:
- The system is very flexible and scalable.
- Software adaptations are all that is needed for rapid custom developments.
- Digital signal links are immune to noise, which is crucial for SPM applications.

24 Signal Channels
The generic analog interface provides 24 live signals: 8 outputs, 8 inputs and 8 internal signals. They are used to connect the microscope to bias voltage, tunneling current, deflection, x-, y-, z-scan, external lock-ins etc. The software interprets all signals as real world numbers in floating-point representation, with assigned SI units for immediate quantitative results.

Signal Analysis and Monitoring
All signals can be inspected with the FFT spectrum analyzers, signal charts, storage oscilloscope or signal history. Such fully digital and integrated software instruments are much more efficient in use, less invasive, better in performance and lower in cost than their external counterparts. This is of great value for optimizing the experimental setup, eliminating disturbances and thus improving the quality of the scientific results.

High Resolution AD/DA Conversion
“There is plenty of room at the bottom”, said Richard Feynman when he described his vision of the science hat led to nanotechnology. Enormous resolution is required to reveal the smallest features, while maintaining an acceptable sample range. The Nanonis system employs sophisticated digital filtering, oversampling and dithering techniques to provide the highest resolution. The patented hrDAC™ technology turns the 16-bit DA converters into real 22-bit devices which would fill up a full board and cost ten times as much in a traditional approach. There is no need to switch gains and co-ordinates are absolute over the full range. The Nanonis system is pushing the limits for high resolution scanning.

Interactive Scan Control
The control system for a scanning probe microscope is like a cockpit and the pilot needs to be supported in all his maneuvers on the flight through the nano-world. The scan control module is fully interactive and dynamic. It is possible to zoom-in on acquired data, paste scanned data to the background for reference and display different channels in multiple windows.

Versatile z-Controller
The distance between tip and sample can be controlled by any of the signals or combinations thereof. The quantitative parameters allow the application of control theory models and yield a further understanding of tip-sample interaction. The user-configurable z-controller allows on-the-fly switching between settings such as input signal and feedback parameters.

MultiPass Scanning
As research advances the complexity of the data acquisition modes grow constantly. Scanning a single line multiple times with different feedback parameters or even modes is becoming more and more common. With probably the most flexible scan engine available, the Nanonis SPM Control System is well prepared for new directions in research.
Advanced 2D-and 3D-Spectroscopy
Advanced spectroscopy modules provide a set of flexible routines for experiments on a point, line, grid, or a cloud of points:
- Bias spectroscopy
- z-spectroscopy
- Generic spectroscopy to sweep any output or parameter while any number of channels are recorded
- User-defined experiment written in LabVIEW
In Point-and-Shoot Mode the user can interactively perform any experiment at a click of the mouse at arbitrary positions.

Reliability
The Nanonis system has a proven track record of reliability, running for months without reboot in labs all around the world. SPM experiments are complex and do not always work on the first try. Therefore a reliable control system is important to ensure that it will not fail just as the experiment is progressing well.

Add-On Modules
A wide variety of add-on modules is available to extend functionality and customize the field of use of the control system. The main modules that are available are
- Versatile Lock-in Detector for all channels
- Individual Customization with LabVIEW
- Atom Tracking
- Piezo Drivers for scanners and motors
- Adaptation Kit for commercial microscopes
- Digitally integrated PLL for non-contact AFM
- Kelvin Probe Controller
- Interferometer Controller

Digital Lock-In Detector
Whether to probe dI/dV or to measure the transfer function of individual components of the signal path, the integrated lock-in detector will prove a valuable tool for every day’s work.

Prepared for the Future – with LabVIEW
Competitive advantage in research is often based on the modification of an instrument that allows the researcher to do experiments in a way nobody else has done them before him. This is where our LabVIEW Programming Interface steps in - to give you the building blocks to design your own experiment. The LabVIEW Programming Interface is a library of functions to remote control the Nanonis SPM control system. It is used to automate experiments, calibration routines and experimental procedures or to monitor parameters and trigger alarms. Instead of using a scripting language, the Nanonis System provides full access to everything LabVIEW offers including debugging capabilities and a fully integrated development environment.
Nanonis SPM Control System

General
Scope of delivery Real-time controller RC4, signal conditioning SC4, software and license, unlimited updates and support for one year, host computer (opt.)
Cases Stackable benchtop cases, Wavetronics, rack mount kit available
Operating temp. -5° C to +40° C
Compliance CE
Warranty One year parts and labor on defects in material and workmanship
Documentation User manual for hardware and installation, printed user manual for graphical user interface, online help

RC4
Dimensions, weight 32.5 x 28 x 12 cm, 4.5 kg
Power Universal power supply, max 60 W
Components Pentium mobile 2 GHz, 1 GB ram, 40 GB HD, 2 PCI slots, ethernet adapter
Operating system National Instruments Real-Time OS
I/O card NI-FPGA RIO (PCI-7819R)

SC4
Dimensions, weight 32.5 x 28 x 7 cm, 3.6 kg
Power 100 V - 240 V, 50 - 60 Hz, 10 W, automatic switching, toroidal transformer, linear regulated
Ground 100 kΩ AGND to chassis, decoupled from RC4

Analog Inputs
Hardware interface 8 x BNC connectors, differential
Diff input vol ±10 V
Diff input range
Diff input resistance 100 kΩ
Analog bandwidth DC - 5 kHz, 4th order Butterworth low-pass filter
AD converter 16-bit, no missing codes, 200 kSps
Effective resolution 20-bit or 10 kSps, 24-bit @ 100 kSps (oversampling)
Analog input noise 0.15 mV / sqrt(Sps)
Converter noise 0.2 V / sqrt(Sps)
Measurement noise 0.140 μV rms @ 10 kSps, 0.45 μV rms @ 1 kSps

Analog Outputs
Hardware interface 8 x BNC, referenced to AGND
Output voltage ±10 V into 2 kΩ, (0 to 10 V per dip switch per channel)
Output resistance < 1 kΩ, short circuit safe
Analog bandwidth 5 kHz, 4th order Butterworth low-pass filter
DA converter 16-bit, monotonic, ±1 %
Effective resolution 22-bit, patented high-precision technology with active glitch compensation
Noise density 0.35 mV / sqrt(Sps)
Output noise 0.30 μV rms, ± 0.35 μV / sqrt(Sps)

Digital Lines and Pulse Counter
Ports 8 a 8 lines on two sub-D9 female
Direction Input or output for each line
Signal 3.3 V TTL, max 5 mA per line
Pulse counters 2, up to 40 MCrts

Software Positioning and Auto-Approach
Types Slipp stick piece drive, tip type, stepper motor, DC motor
Interfaces Digital port, serial, USB, GPIB, ethernet etc.
Auto approach Different protocols, configurable, programmable with graphical interface

Graphical User Interface
Operating system Windows XP/Visa7
Min. requirements Pentium 2 GHz or equiv., 2 GB RAM, 40 GB HD, two 19" Monitors with at least 1280 x 1024 pixels
License Unlimited in time, bound to RC4
Documentation Online help, F1 for context sensitive help, tip strips for each control element, printed software operation manual
Load & save settings For every session directory, settings, parameters and screen layout

Signals & Analysis
Signals 24 live signals: 8 inputs, 8 outputs and 8 internal signals
Data transfer Via TCP/IP, 1 kSps default, up to 10 kSps
Representation 32-bit floating point, real world physical units
Oscilloscope DC, rms and peak-peak measurements, triggering by level or manual
Spectrum analyzer Power spectral density in physical units (e.g. A / sqrt(Hertz))
Long term spectrum Power spectral density vs time as gray-scale plot
Signal charts Continuously rolling charts with adjustable speed
Long term chart Record signals over days
Signal history All 24 signals in memory for the last minute

z-Controller
Algorithm Digital PI controller, anti wind-up, bump-less start and stop
Control bandwidth Up to 2 kHz (1 dB point of closed-loop transfer function)
Control signal Any of the 24 signals and elementary operations thereof (+, -, *, /)
Preprocessing ARB, lbg, bipolar
Controller switching On-the-fly, from a predefined set of controller settings
Param. adjustment Real-time interactive, physical units, logarithmic or linear slider scales
SafeTip™ User-definable condition on any signal or combination thereof
TipLift™ Z-offset after switching the controller off
Smooth-off Averaging Z-position for reproducible hold of tip-sample distance

Scan Control
Aquisition channels 1 - 24 forward and backward
Scan frame Real-time interactive, mouse definable, also non-square
Resolution 32 x 32 up to 8192 x 8192, also non-square pixels
Scan speed Max. 10 kHz pixel frequency, max. 100 lines/second, const time / line or const surface speed, diff. forward and backward speed
Scan modes Single: up & down, continuous: up, down & bounce, auto save
File format Documented, example load routines, SPM, Gwydion, WSXM, MAT/LAB
Visualization Tip position in real-time, adjustable color table, pasted scanned image to background for reference
Scan data display Up to 7 windows with different views for zoom, channel, color etc.
Display data proc. None, slope subtract, slope and av. subtract, differentiate
Line scan monitor Display up to 4 last scan lines, forward and backward scan
Slope compensation Real-time, adjustable in degrees, smooth transitions
Shift compensation Linear in 3 dimensions

Generic Sweeper
Sweep channels Outputs, setpoints, div. parameters
Acquisition channels 24 signals, system parameters
Samples per curve 32 - 1 M
Visualization Real-time during acquisition
Timing Setting time and acquisition time (1 ms - 10 s)

Spectroscopy
Acquisition channels 1 - 24, forward and backward
Sweep channels Bias, z
Data samples 32 - 1 M (per curve)
Timing Z hold av., initial settling time, settling time, acquisition time, slew rate, etc. 100 μs resolution, up to 10 s
Multi-curve av. With ≥ control in between

Spectroscopy on a Grid or Line
Grid Rectangular, min. 4 x 4, max. limited by 2 GB total data file
File format ASCII for each curve or binary for total grid, documented file format, file browser & example load routines
Experiments Bias- or z-spectroscopy, generic sweeper or any self-programmed routines with LabVIEW interface
Data acquired Topography, set of config. parameters for every point, spectroscopy data

LabVIEW Programming Interface
Scope Library of VIs to control elements of the graphical user interface
Connection Via TCP/IP to VISA Server on host computer, local or remote access
Tasks Automatic experiments, automate operation sequence for calibrations and experimental procedures, polling of parameters and signals at high rate for supervision, alarming etc.

Technical alterations reserved. The information in this document is provided with greatest care but SPECS does not assume any liability arising from the application or use of the information or product described here. SPECS, Kolibri and Tyto as well as the corresponding logos are registered trademarks of SPECS Surface Nano Analysis GmbH in Germany and other countries worldwide. Nanonis is a registered trademark of SPECS Zurich GmbH in Switzerland and other countries worldwide. Other product and company names mentioned herein are trademarks or trade names of their respective companies.

Printed in February 2011

Your Local Representative:

Innovation in Surface Spectroscopy and Microscopy Systems